For partial fractions, if you have a repeated factor such as (x−a)n in the denominator, you must have degrees 1 through n in your partial fraction sum.
581∫−22(x+71+x2+97−x)dx581∫−22(x+71+x2+97−x2+9x)dx581(∫x+71dx+∫x2+97dx−∫x2+9xdx)−22581(∫udu+∫x2+97dx−∫x2+9xdx+C)−22581(ln(x+7)+∫x2+97dx−∫x2+9xdx+C)−22581(ln(x+7)+∫x2+97dx−21∫udu+C)−22581(ln(x+7)+∫x2+97dx−21ln(x2+9)+C)−22581(ln(x+7)+97tan−1(3x)−21ln(x2+9)+C)−22========and so on