Nonhomogenous Linear System
x′=A(t)x+f(t)
Solution Form
x(t)=xp(t)+xc(t)
where xp is a particular solution to the original (nonhomogenous system)
where xc are general solutions to the homogenous system of xc′=A(t)xc
Suppose that the solutions of the homogenous system are
xc(t)=C1x1(t)+⋯+Cnxn(t)
The following matrix is called a fundamental matrix
M(t)=[x1(t) … xn(t)]
Then
xc(t)=M(t)C
Let x(t)=M(t)u(t)
Then u′=M(t)−1f(t)
Integrate both sides to get up=∫M(t)−1f(t)dt
Then xp=M(t)up(t) is a particular solution
Example
x′=[1411]x+[−1+21t+e3ttan(t)2+30t+2e3ttan(t)]
Find xc first, start with eigenstuff.
xc(t)=C1e−t[−12]+C2e3t[12]
Find fundamental matrix
M(t)=[x1(t)x2(t)]=[−e−t2e−te3t2e3t]
Set x(t)=M(t)u(t), which implies u′=M(t)−1f(t)
Evaluate u′
u′(t)=[−e−t2e−te3t2e3t]−1[−1+21t+e3ttan(t)2+30t+2e3ttan(t)]
Recall ![[Linear Algebra#2-times-2-inverse-shortcut|2times2 Inverse Shortcut]]
u′(t)=−4e2t1[2e3t−2e−t−e3t−e−t][−1+21t+e3ttan(t)2+30t+2e3ttan(t)]
u′(t)=[(1−3t)et18te−3t+tan(t)]
Integrate u′:
u(t)=[(4−3t)et+C1(−2−6t)e−3t−ln(cos(t))+C2]
Acquire xp(t)
xp(t)=[−e−t2e−te3t2e3t][(4−3t)et+C1(−2−6t)e−3t−ln(cos(t))+C2]=[−6−3t−e3tln(cos(t))4−18t−2e3tln(cos(t))]
Final answer
x(t)=C1e−t[−12]+C2e3t[12]+[−6−3t−e3tln(cos(t))4−18t−2e3tln(cos(t))]